Optimale Verwendung statt Verschwendung: Maschinenkapazitäten besser planen

In (fast) jeder Produktion gibt es Engpassmaschinen, die als „Bottlenecks“ die Taktrate eines kompletten Fertigungsbereichs bestimmen und deshalb die besondere Aufmerksamkeit der Produktionsplanung erfordern.
Für diese Aufgabe gibt es Software-Tools. Aber die Praxis zeigt: Auch wenn diese zum Einsatz kommen und die Planer den potenziellen Engpass berücksichtigen, kommt es trotzdem immer wieder zu Stockungen und Verzögerungen in der Produktion.

Der Grund: Die Software kann sehr wohl den Betrieb der Maschine überwachen und im Idealfall auch optimieren. Aber ihr fehlt der Blick auf das Umfeld – mit der Folge, dass die vermeintliche „Problemmaschine“ tipptopp läuft und konstant Höchstleistung erbringt, nun aber die vor- und nachgelagerten Prozesse Probleme bereiten.

Die Konsequenz daraus: Ein Software-Tool, das nur eine Einzelanlage in der verketteten Produktion optimiert, ist eindeutig „suboptimal“. Vielerorts werden Produktionsplanungssysteme, kurz PPS, eingesetzt. Diese sind zwar hilfreich, betrachten jedoch die Fertigungsabläufe nur schematisch aufeinanderfolgend, vergleichbar mit einer Perlenkette. Abhängigkeiten zwischen den Arbeitsplätzen, Echtzeitdaten und Zeitstempel finden hier keine Berücksichtigung. Es bleibt somit bei einem „theoretisch“ möglichen Plan. Auch mit einem solchen Tool kann es zu Engpässen kommen, wie die mehr oder wenige leidvolle Erfahrung in vielen Betrieben beweist.

Den Produktionsablauf optimieren – aber wie?

Geht es denn auch anders, das heißt besser? Ja klar. Ein Beispiel: Ein Automobilhersteller hat in einem Pilotprojekt in seinem Karosseriebau konsequent Daten erhoben und ausgewertet, um die Abläufe zu optimieren. Das Ergebnis: Es können nun 15% mehr Karosserien pro Zeiteinheit gefertigt werden. Allerdings muss man hinzufügen: Mit diesem Projekt hat sich ein ganzes Team – einschließlich wissenschaftlicher Begleitung – beschäftigt, und es wurden rund zwei Milliarden Datensätze untersucht, korreliert und mit Algorithmen ausgewertet. Das mag bei einer Automobil-Serienproduktion möglich sein, nicht aber in der „normalen“ Industrieproduktion – abgesehen davon, dass die Auswertung der Daten sowie die Umsetzung der Erkenntnisse viel Zeit und Expertenwissen erfordert.

Künstliche Intelligenz ist gefragt

Die Frage, die sich daraus ergibt, lautet: Geht es auch eine Nummer kleiner? Hier kommt ein KI-basierter Algorithmus ins Spiel, mit dessen Hilfe das bestmögliche Ergebnis in einer vorgegebenen Rechenzeit mathematisch ermittelt wird. Die ersten Algorithmen entstanden bereits in der Antike und haben sich seitdem bewährt. Heutzutage werden derartige Methoden u. a. für die Auswertung von Zufallsstichproben genutzt. Auch das neue Software-Tool GIB GXM Factory Optimization Excellence (FOX) basiert auf einem KI-basierten Algorithmus und ermöglicht so die gleichzeitige und optimale Beplanung aller Arbeitsplätze im Werk.

Optimale und gleichzeitige Beplanung mehrerer Maschinen oder Arbeitsplätze

Das klingt zunächst nicht spektakulär. Aber um diese Funktion praxisgerecht zu erfüllen, muss die Software sämtliche Anforderungen, Abhängigkeiten, Aufträge und Kapazitäten berücksichtigen und in Relation zueinander setzen. Das dabei zu berücksichtigende Datenvolumen ist schwindelerregend. Ein Experten-Team wie oben beschrieben, würde Monate für die Berechnung brauchen: kein Idealzustand für eine rollierende Planung oder einem Planungshorizont von ein bis zwei Wochen.

Den „möglichst besten“ Produktionsplan errechnen

Der KI-basierte Algorithmus der ifm-Lösung sorgt dafür, dass alle Ressourcen und Anforderungen über sämtliche betrachtete Aufträge und über alle verfügbaren Maschinen zu einem real machbaren Fertigungsplan kombiniert werden. Danach errechnet das System einen weiteren Plan mit exakt denselben Daten, vergleicht die Ergebnisse und verwirft den schlechteren Plan. Das System errechnet so lange neue Fertigungspläne, vergleicht sie und behält den besseren bei, bis das vorgegebene Zeitlimit erreicht ist. Der zu diesem Zeitpunkt beste Plan wird dann an den Produktionsplaner übergeben.

Doch der intelligente Algorithmus ist nur ein Teil der bahnbrechenden ifm-Lösung, denn auch Mathematik auf höchstem Niveau benötigt die richtigen Daten. Im sogenannten „Pegging“ werden die Abhängigkeiten aller Arbeitsplätze für jeden zu bearbeitenden Auftrag im Betrachtungszeitraum ermittelt. Dazu zählen auch Zeitstempel, beispielsweise Liegezeiten und Rüstzeiten. Im Pegging wird das komplexe Netzwerk der Fertigungsabläufe „entwirrt“ und kann dann zur Berechnung des Produktionsplans herangezogen werden.

Kombination von Künstlicher Intelligenz und Pegging bringt klare Vorteile

Die Vorteile, von dem die Anwender des neuen Planungs-Tools profitieren, liegen auf der Hand:

  • Die Verwendung von Ressourcen kann viel besser geplant und somit Verschwendung gestoppt werden. Ein Beispiel: Eine Engpassmaschine sorgt für einen Stau im Fertigungsablauf. Die Folgen: Der Auftrag kann nicht termingerecht fertiggestellt werden, die nachfolgenden Maschinen und Werker stehen, die Zwischenprodukte aus den vorgelagerten Prozessen müssen zwischengelagert werden. Das kostet Lagerplatz und Leergut und erhöht die Kapitalbindung. Und das kann man, siehe oben, vermeiden.
  • Der Durchlauf beschleunigt sich, weil Warte-, Liege- und Rüstzeiten aufeinander abgestimmt werden. Das senkt Betriebskosten und sorgt für eine gleichmäßige Auslastung der Kapazitäten. Zudem wird die Overall Equipment Effectiveness (OEE) erhöht und die Gesamtausbringung steigt, ohne dass die Produktionsgeschwindigkeit in kritische Bereiche erhöht oder Sonderschichten angeordnet werden müssen.

Ergebnis: Verschwendung wird siebenfach gestoppt

Genauer betrachtet bietet die neue Software siebenfachen Vorteil. Denn sie adressiert jede einzelne der sieben Arten der Verschwendung von Ressourcen, die es in der Supply Chain gibt. Diese Verschwendungen kennt man unter dem Akronym „TIM WOOD“: Transport, Inventory, Movement, Waiting, Over-Production, Over-Engineering, Defects. Auf Deutsch: Transport, Bestand, Bewegung, Wartezeiten, Überproduktion, Over-Engineering, Defekte.

Ein konkretes Beispiel aus der Fertigung:

  • Transport – Teile und Materialien werden von einem Ort zum anderen befördert
    Die Materialzulieferung an den Arbeitsplatz wird zeitlich und kapazitiv an den Produktionsplan angepasst. So werden Wartezeiten, Materialengpässe und Überangebote vermieden.
  • Bestand – nicht fertiggestellte (Zwischen-)Produkte oder Bauteile; Lager von Zulieferteilen
    Anstatt Pufferbestände aufzubauen, um „befürchtete“ Engpässe zu überbrücken, werden alle Aufträge in time gefertigt. Weniger Bestand bedeutet weniger Kosten.
  • Bewegung – Unnötige Bewegungen von Mitarbeitern oder Maschinen
    Anstatt ständig an Störungen im Ablauf zu laborieren und damit nur Feuerwehr zu spielen, können Materialien und Menschen optimal und stressfrei eingesetzt werden. Workarounds als Folge von Störungen sind obsolet.
  • Wartezeiten – z. B. auf die Lieferung von Zukaufteilen oder Zwischenprodukten
    Verzögerungen durch Staus im Fertigungsablauf gehören der Vergangenheit an.
  • Überproduktion – Fertigung „auf Halde“ ohne (interne oder externe) Abnehmer
    Der Anwender muss keine Puffer für vermeintliche Engpassmaschinenanlagen einplanen. Dieser fertigt anhand „echter“ Aufträge.
  • Over-Engineering – Hinzufügen von Features, die keinen Wert bringen
    Stattdessen ermittelt der Algorithmus eine Lösung, die eine hohe Effizienz in einem performanten Zeitlimit bietet. Sie strebt nicht nach einem perfekten Plan, sondern nach der besten Strategie. Dabei bleibt sie „schlank“ und verzichtet etwa auf komplexe Analysemöglichkeiten, die sich kontraproduktiv auf die Transparenz und Usability auswirken.
  • Defekte – Teile müssen nachgearbeitet werden.
    Plötzliche Planänderungen, Umdisponieren von Ressourcen auf andere Maschinen und Arbeitsplätze, ungeplante Stillstände: Solche Unregelmäßigkeiten führen oft zu Fehlern in der Produktion. Auch das kann man durch die Kombination von Künstlicher Intelligenz und Pegging vermeiden.

Fazit: Verwendung von Ressourcen besser planen und damit Verschwendung stoppen

In allen sieben „Pain Points“ der innerbetrieblichen Supply Chain kann das neue Software-Tool Verschwendung reduzieren und die Nutzung der vorhandenen Ressourcen optimieren. Das gilt für den „Stand alone“-Betrieb von GIB GXM FOX und – in noch höherem Maße – auch für seinen Einsatz in Kombination mit anderen IIoT-Werkzeugen von ifm, die zum Beispiel die Themen Maintenance und Track-and-Trace-Quality adressieren. Empfehlenswert ist das Tool auch als Add-on zu den GIB-Kernprodukten, die unter anderem Bodensatz sowie Über- und Unterdeckung identifizieren, Reichweiten optimieren und Sicherheitsbestände austarieren.

By: Gerald Scheffels für ifm


Sie möchten noch mehr über das GIB GXM FOX erfahren und wissen, wie auch unsere weiteren Produkte und Leistungen Sie bei den Themen „Verschwendung vermeiden“ und „mehr Nachhaltigkeit“ unterstützen? Dann verpassen Sie nicht unsere diesjährige SCM-Fachtagung, die ifm SUCCESS DAYS 2023!

Das Event findet am 23. und 24. Mai unter dem Motto „The impact of change – How much can your supply chain take?” statt. Melden Sie sich jetzt an und nehmen Sie entweder vor Ort im Apollo-Theater Siegen oder im digitalen Livestream teil!

www.successdays.de

Über die ifm electronic gmbh

Als lizenzierter SAP Silver Partner und Experte für Effizienz und Transparenz in der Supply Chain, bietet die Softwaresparte der ifm u. a. ganzheitliche Softwarelösungen an, die vollständig im SAP-System integriert sind. International ist die ifm seit Jahrzehnten als Automatisierungsspezialist bekannt. Seit 2016 ist auch die Digitalisierung sämtlicher Geschäftsprozesse und deren Einbindung in das SAP-/ERP-System zu einem wichtigen Geschäftsfeld der ifm-Gruppe geworden.

Mit „GIB SCX“ werden die logistischen Prozesse von der Absatzplanung über die Produktions- und Bedarfsplanung bis hin zu Beschaffung und Bestandsmanagement optimiert. Dies sorgt für schnellere, transparentere und effizientere Abläufe in der Supply Chain. Die sofort einsatzbereiten Supply-Chain-Lösungen laufen auf SAP ECC 6.0 und SAP S/4HANA und sind sowohl On-Premises als auch in der Cloud verfügbar. Sie unterstützen dabei, Überbestände zu identifizieren und abzubauen, Prozesskosten zu senken und die Liquidität zu erhöhen, indem gebundenes Kapital freigesetzt wird. Das IIoT-Tool „GIB Shop Floor Integration“ ermöglicht die Anbindung der Produktionsebene und garantiert so eine durchgängige Kommunikation vom Sensor bis ins SAP.

Die SCM-Lösungen der ifm sind nach oben und unten skalierbar. So werden sowohl komplexe Konzernanforderungen als auch die Budgetvorgaben mittelständischer Unternehmen erfüllt. Über 900 Kunden weltweit setzen bereits auf die ifm-Supply-Chain-Lösungen und profitieren dadurch von nachhaltiger Bestandsoptimierung bei gleichzeitiger Steigerung der Lieferbereitschaft.

Firmenkontakt und Herausgeber der Meldung:

ifm electronic gmbh
Martinshardt 19
57074 Siegen
Telefon: +49 (271) 23871-4000
Telefax: +49 (271) 23871-4999
http://www.ifm-business-solutions.com

Ansprechpartner:
Lena Schneider
Projektkoordinatorin
Telefon: 0271 238 714141
E-Mail: lena.schneider@ifm.com
Für die oben stehende Pressemitteilung ist allein der jeweils angegebene Herausgeber (siehe Firmenkontakt oben) verantwortlich. Dieser ist in der Regel auch Urheber des Pressetextes, sowie der angehängten Bild-, Ton-, Video-, Medien- und Informationsmaterialien. Die United News Network GmbH übernimmt keine Haftung für die Korrektheit oder Vollständigkeit der dargestellten Meldung. Auch bei Übertragungsfehlern oder anderen Störungen haftet sie nur im Fall von Vorsatz oder grober Fahrlässigkeit. Die Nutzung von hier archivierten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Eine systematische Speicherung dieser Daten sowie die Verwendung auch von Teilen dieses Datenbankwerks sind nur mit schriftlicher Genehmigung durch die United News Network GmbH gestattet.

counterpixel